The tensor algebra compiler

Author:

Kjolstad Fredrik1,Kamil Shoaib2,Chou Stephen1,Lugato David3,Amarasinghe Saman1

Affiliation:

1. Massachusetts Institute of Technology, USA

2. Adobe, USA

3. CEA, France

Abstract

Tensor algebra is a powerful tool with applications in machine learning, data analytics, engineering and the physical sciences. Tensors are often sparse and compound operations must frequently be computed in a single kernel for performance and to save memory. Programmers are left to write kernels for every operation of interest, with different mixes of dense and sparse tensors in different formats. The combinations are infinite, which makes it impossible to manually implement and optimize them all. This paper introduces the first compiler technique to automatically generate kernels for any compound tensor algebra operation on dense and sparse tensors. The technique is implemented in a C++ library called taco. Its performance is competitive with best-in-class hand-optimized kernels in popular libraries, while supporting far more tensor operations.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference65 articles.

1. Tensor Decompositions for Learning Latent Variable Models;Anandkumar Animashree;J. Mach. Learn. Res. 15, Article 1,2014

2. E. Anderson Z. Bai C. Bischof S. Blackford J. Demmel J. Dongarra J. Du Croz A. Greenbaum S. Hammarling A. McKenney and D. Sorensen. 1999. LAPACK Users’ Guide (third ed.). Society for Industrial and Applied Mathematics Philadelphia PA. 10.1137/1.9780898719604 E. Anderson Z. Bai C. Bischof S. Blackford J. Demmel J. Dongarra J. Du Croz A. Greenbaum S. Hammarling A. McKenney and D. Sorensen. 1999. LAPACK Users’ Guide (third ed.). Society for Industrial and Applied Mathematics Philadelphia PA. 10.1137/1.9780898719604

3. Gilad Arnold. 2011. Data-Parallel Language for Correct and Efficient Sparse Matrix Codes. Ph.D. Dissertation. University of California Berkeley. Gilad Arnold. 2011. Data-Parallel Language for Correct and Efficient Sparse Matrix Codes. Ph.D. Dissertation. University of California Berkeley.

4. Automatic code generation for many-body electronic structure methods: the tensor contraction engine‡‡

Cited by 205 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SpChar: Characterizing the sparse puzzle via decision trees;Journal of Parallel and Distributed Computing;2024-10

2. Efficient Low-Memory Implementation of Sparse CNNs Using Encoded Partitioned Hybrid Sparse Format;ACM Transactions on Embedded Computing Systems;2024-09-11

3. Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs;ACM Transactions on Parallel Computing;2024-08-27

4. The Dataflow Abstract Machine Simulator Framework;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

5. Mind the Gap: Attainable Data Movement and Operational Intensity Bounds for Tensor Algorithms;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3