Directional Dipole Model for Subsurface Scattering

Author:

Frisvad Jeppe Revall1,Hachisuka Toshiya2,Kjeldsen Thomas Kim3

Affiliation:

1. Technical University of Denmark, Denmark

2. Aarhus University, Denmark

3. The Alexandra Institute, Denmark

Abstract

Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some translucency effects in the rendered result. We present an improved analytical model for subsurface scattering that captures translucency effects present in the reference solutions but remaining absent with existing models. The key difference is that our model is based on ray source diffusion, rather than point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction similar to that of the standard dipole model, but we now have positive and negative ray sources with a mirrored pair of directions. Our model is as computationally efficient as existing models while it includes single scattering without relying on a separate Monte Carlo simulation, and the rendered images are significantly closer to the references. Unlike some previous work, our model is fully analytic and requires no precomputation.

Funder

Danish Agency for Science, Technology and Innovation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural SSS: Lightweight Object Appearance Representation;Computer Graphics Forum;2024-07

2. State of the Art in Efficient Translucent Material Rendering with BSSRDF;Computer Graphics Forum;2023-12-22

3. Improved normal distribution function for skin specular reflection rendering based on GGX distribution;Third International Conference on Computer Graphics, Image, and Virtualization (ICCGIV 2023);2023-11-14

4. Single scattering models for radiative transfer of isotropic and cone-shaped light sources in fog;Optics Express;2022-12-20

5. Reconstructing Translucent Objects using Differentiable Rendering;Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings;2022-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3