Structure Aware Experience Replay for Incremental Learning in Graph-based Recommender Systems

Author:

Ahrabian Kian1,Xu Yishi2,Zhang Yingxue2,Wu Jiapeng1,Wang Yuening3,Coates Mark3

Affiliation:

1. MILA & McGill University, Montreal, PQ, Canada

2. Huawei Noah's Ark Lab, Montreal, PQ, Canada

3. McGill University, Montreal, PQ, Canada

Publisher

ACM

Reference33 articles.

1. Peter W Battaglia Jessica B Hamrick Victor Bapst Alvaro Sanchez-Gonzalez Vinicius Zambaldi Mateusz Malinowski Andrea Tacchetti David Raposo Adam Santoro Ryan Faulkner etal 2018. Relational inductive biases deep learning and graph networks. arXiv:1806.01261 (2018). Peter W Battaglia Jessica B Hamrick Victor Bapst Alvaro Sanchez-Gonzalez Vinicius Zambaldi Mateusz Malinowski Andrea Tacchetti David Raposo Adam Santoro Ryan Faulkner et al. 2018. Relational inductive biases deep learning and graph networks. arXiv:1806.01261 (2018).

2. Francisco M. Castro Manuel J. Marín-Jiménez Nicolás Guil Cordelia Schmid and Karteek Alahari. 2018. End-to-End Incremental Learning. Francisco M. Castro Manuel J. Marín-Jiménez Nicolás Guil Cordelia Schmid and Karteek Alahari. 2018. End-to-End Incremental Learning.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continual Collaborative Distillation for Recommender System;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Topology-aware Embedding Memory for Continual Learning on Expanding Networks;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. GPT4Rec: Graph Prompt Tuning for Streaming Recommendation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

4. Connectivity-Aware Experience Replay for Graph Convolution Network-Based Collaborative Filtering in Incremental Setting;2024 9th International Conference on Big Data Analytics (ICBDA);2024-03-16

5. Real Time Index and Search Across Large Quantities of GNN Experts for Low Latency Online Learning;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3