Learning An End-to-End Structure for Retrieval in Large-Scale Recommendations
Author:
Affiliation:
1. ByteDance Inc., Beijing, China
2. ByteDance Inc., Mountain View, CA, USA
3. ByteDance Inc., Bellevue, WA, USA
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3459637.3482362
Reference35 articles.
1. Deep Neural Networks for YouTube Recommendations
2. Maximum Likelihood from Incomplete Data Via theEMAlgorithm
3. Itay Evron Edward Moroshko and Koby Crammer. 2018. Efficient loss-based decoding on graphs for extreme classification. (2018) 7233--7244. Itay Evron Edward Moroshko and Koby Crammer. 2018. Efficient loss-based decoding on graphs for extreme classification. (2018) 7233--7244.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. DeCoCDR: Deployable Cloud-Device Collaboration for Cross-Domain Recommendation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10
2. Multitask Ranking System for Immersive Feed and No More Clicks: A Case Study of Short-Form Video Recommendation;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21
3. Full Index Deep Retrieval: End-to-End User and Item Structures for Cold-start and Long-tail Item Recommendation;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14
4. Revisiting Neural Retrieval on Accelerators;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04
5. DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation;Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining;2023-02-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3