Affiliation:
1. Carleton University, Ottawa, Canada
Abstract
Learning to play a musical instrument and engaging in musical activities have enabled blind and/or low vision people to develop self-identity, find community and pursue music as a career. However, blind and/or low vision music learners face complex obstacles to learn music. They are highly reliant on their learning environment and music teachers for accommodations and flexibility. Prior research has identified the challenges faced by blind and/or low vision musicians and recognized the importance of touch for music reading and physical guidance. However, limited research has addressed these challenges through the development of assistive technology. The development of music computer technologies with haptics and the affordances of wearable technologies provides encouraging opportunities to develop haptic wearable devices to support blind and/or low vision music learning. I identify three unexplored research questions: (1) what design considerations must be addressed in future assistive technologies for BLV music learning, (2) how can wearable technologies with vibrotactile feedback support BLV student-teacher interactions, and (3) what are the long-term benefits and limitations of the use of assistive technologies for BLV music learning? I outline my research to date and highlight my findings.
Publisher
Association for Computing Machinery (ACM)