Dynamic allocation for scratch-pad memory using compile-time decisions

Author:

Udayakumaran Sumesh1,Dominguez Angel1,Barua Rajeev1

Affiliation:

1. University of Maryland, College Park, MD

Abstract

In this research, we propose a highly predictable, low overhead, and, yet, dynamic, memory-allocation strategy for embedded systems with scratch pad memory. A scratch pad is a fast compiler-managed SRAM memory that replaces the hardware-managed cache. It is motivated by its better real-time guarantees versus cache and by its significantly lower overheads in energy consumption, area, and overall runtime, even with a simple allocation scheme. Primarily scratch pad allocation methods are of two types. First, software-caching schemes emulate the workings of a hardware cache in software. Instructions are inserted before each load/store to check the software-maintained cache tags. Such methods incur large overheads in runtime, code size, energy consumption, and SRAM space for tags and deliver poor real-time guarantees just like hardware caches. A second category of algorithms partitions variables at compile-time into the two banks. However, a drawback of such static allocation schemes is that they do not account for dynamic program behavior. It is easy to see why a data allocation that never changes at runtime cannot achieve the full locality benefits of a cache. We propose a dynamic allocation methodology for global and stack data and program code that; (i) accounts for changing program requirements at runtime, (ii) has no software-caching tags, (iii) requires no runtime checks, (iv) has extremely low overheads, and (v) yields 100% predictable memory access times. In this method, data that is about to be accessed frequently is copied into the scratch pad using compiler-inserted code at fixed and infrequent points in the program. Earlier data is evicted if necessary. When compared to a provably optimal static allocation, results show that our scheme reduces runtime by up to 39.8% and energy by up to 31.3%, on average, for our benchmarks, depending on the SRAM size used. The actual gain depends on the SRAM size, but our results show that close to the maximum benefit in runtime and energy is achieved for a substantial range of small SRAM sizes commonly found in embedded systems. Our comparison with a direct mapped cache shows that our method performs roughly as well as a cached architecture.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference48 articles.

1. Appel A. W. and Ginsburg M. 1998. . . . C. Cambridge University Press Cambridge.]] Appel A. W. and Ginsburg M. 1998. Modern Compiler Implementation in C. Cambridge University Press Cambridge.]]

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compiler-Based Memory Encryption for Machine Learning on Commodity Low-Power Devices;Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction;2024-02-17

2. Mapi-Pro: An Energy Efficient Memory Mapping Technique for Intermittent Computing;ACM Transactions on Architecture and Code Optimization;2023-12-14

3. GNN at the Edge: Cost-Efficient Graph Neural Network Processing Over Distributed Edge Servers;IEEE Journal on Selected Areas in Communications;2023-03

4. Pin or Fuse? Exploiting Scratchpad Memory to Reduce Off-Chip Data Transfer in DNN Accelerators;Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization;2023-02-17

5. Optimizing data placement and size configuration for morphable NVM based SPM in embedded multicore systems;Future Generation Computer Systems;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3