A design methodology for application-specific networks-on-chip

Author:

Xu Jiang1,Wolf Wayne1,Henkel Joerg2,Chakradhar Srimat3

Affiliation:

1. Princeton University, Princeton, NJ

2. University of Karlsruhe, Germany

3. NEC Laboratories America, Inc., Princeton, NJ

Abstract

With the help of HW/SW codesign, system-on-chip (SoC) can effectively reduce cost, improve reliability, and produce versatile products. The growing complexity of SoC designs makes on-chip communication subsystem design as important as computation subsystem design. While a number of codesign methodologies have been proposed for on-chip computation subsystems, many works are needed for on-chip communication subsystems. This paper proposes application-specific networks-on-chip (ASNoC) and its design methodology. ASNoC is used for two high-performance SoC applications. The methodology (1) can automatically generate optimized ASNoC for different applications, (2) can generate a corresponding distributed shared memory along with an ASNoC, (3) can use both recorded and statistical communication traces for cycle-accurate performance analysis, (4) is based on standardized network component library and floorplan to estimate power and area, (5) adapts an industrial-grade network modeling and simulation environment, OPNET, which makes the methodology ready to use, and (6) can be easily integrated into current HW/SW codesign flow. Using the methodology, ASNoC is generated for a H.264 HDTV decoder SoC and Smart Camera SoC. ASNoC and 2D mesh networks-on-chip are compared in performance, power, and area in detail. The comparison results show that ASNoC provide substantial improvements in power, performance, and cost compared to 2D mesh networks-on-chip. In the H.264 HDTV decoder SoC, ASNoC uses 39% less power, 59% less silicon area, 74% less metal area, 63% less switch capacity, and 69% less interconnection capacity to achieve 2X performance compared to 2D mesh networks-on-chip.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference44 articles.

1. CADENCE. www.cadence.com CADENCE. www.cadence.com

2. An interconnect-centric design flow for nanometer technologies

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An energy efficient synthesis flow for application specific SoC design;Integration;2021-11

2. Custom NoC topology generation using Discrete Antlion Trapping Mechanism;Integration;2021-01

3. Noise Bus Modeling in Network on Chip;Journal of Circuits, Systems and Computers;2018-04-26

4. Embedded Computer Vision;Handbook of Hardware/Software Codesign;2017

5. A Classification and Evaluation Framework for NoC Mapping Strategies;Journal of Circuits, Systems and Computers;2016-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3