Directed Test Generation for Activation of Security Assertions in RTL Models

Author:

Witharana Hasini1,Lyu Yangdi1,Mishra Prabhat1

Affiliation:

1. University of Florida, USA

Abstract

Assertions are widely used for functional validation as well as coverage analysis for both software and hardware designs. Assertions enable runtime error detection as well as faster localization of errors. While there is a vast literature on both software and hardware assertions for monitoring functional scenarios, there is limited effort in utilizing assertions to monitor System-on-Chip (SoC) security vulnerabilities. We have identified common SoC security vulnerabilities and defined several classes of assertions to enable runtime checking of security vulnerabilities. A major challenge in assertion-based validation is how to activate the security assertions to ensure that they are valid. While existing test generation using model checking is promising, it cannot generate directed tests for large designs due to state space explosion. We propose an automated and scalable mechanism to generate directed tests using a combination of symbolic execution and concrete simulation of RTL models. Experimental results on diverse benchmarks demonstrate that the directed tests are able to activate security assertions non-vacuously.

Funder

US National Science Foundation

Semiconductor Research Corporation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verifying Memory Confidentiality and Integrity of Intel TDX Trusted Execution Environments;2024 IEEE International Symposium on Hardware Oriented Security and Trust (HOST);2024-05-06

2. Incremental Concolic Testing of Register-Transfer Level Designs;ACM Transactions on Design Automation of Electronic Systems;2024-05-03

3. QcAssert: Quantum Device Testing with Concurrent Assertions;2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC);2024-01-22

4. Directed Test Generation for Hardware Validation: A Survey;ACM Computing Surveys;2024-01-12

5. Towards Accelerating Assertion Coverage Using Surrogate Logic Models;2023 IEEE International Symposium on Circuits and Systems (ISCAS);2023-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3