Lower Bounds on OBDD Proofs with Several Orders

Author:

Buss Sam1ORCID,Itsykson Dmitry2ORCID,Knop Alexander1,Riazanov Artur2,Sokolov Dmitry3

Affiliation:

1. Department of Mathematics, University of California, San Diego, La Jolla, California, USA

2. St. Petersburg Department of Steklov Institute of Mathematics of theRussian Academy of Sciences, Fontanka, St. Petersburg, Russia

3. St. Petersburg State University, Russia and St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences, Fontanka, St. Petersburg, Russia

Abstract

This article is motivated by seeking lower bounds on OBDD(∧, w, r) refutations, namely, OBDD refutations that allow weakening and arbitrary reorderings. We first work with 1 - NBP ∧ refutations based on read-once nondeterministic branching programs. These generalize OBDD(∧, r) refutations. There are polynomial size 1 - NBP(∧) refutations of the pigeonhole principle, hence 1-NBP(∧) is strictly stronger than OBDD}(∧, r). There are also formulas that have polynomial size tree-like resolution refutations but require exponential size 1-NBP(∧) refutations. As a corollary, OBDD}(∧, r) does not simulate tree-like resolution, answering a previously open question. The system 1-NBP(∧, ∃) uses projection inferences instead of weakening. 1-NBP(∧, ∃ k is the system restricted to projection on at most k distinct variables. We construct explicit constant degree graphs G n on n vertices and an ε > 0, such that 1-NBP(∧, ∃ ε n ) refutations of the Tseitin formula for G n require exponential size. Second, we study the proof system OBDD}(∧, w, r ), which allows ℓ different variable orders in a refutation. We prove an exponential lower bound on the complexity of tree-like OBDD(∧, w, r ) refutations for ℓ = ε log n , where n is the number of variables and ε > 0 is a constant. The lower bound is based on multiparty communication complexity.

Funder

Russian Science Foundation

Simons Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science

Reference35 articles.

1. Eigenvalues and expanders;Alon Noga;Combinatorica,1986

2. Explicit Construction of linear sized tolerant networks;Alon Noga;Discrete Mathematics,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3