Facilitating Human Activity Data Annotation via Context-Aware Change Detection on Smartwatches

Author:

Akbari Ali1ORCID,Martinez Jonathan2,Jafari Roozbeh3

Affiliation:

1. Department of Biomedical Engineering, Texas A8M University, College Station, Texas, USA

2. Department of Computer Science and Engineering, Texas A8M University, College Station, Texas, USA

3. Department of Biomedical Engineering, Computer Science and Engineering, and Electrical and Computer Engineering, Texas A8 University, College Station, Texas, USA

Abstract

Annotating activities of daily living (ADL) is vital for developing machine learning models for activity recognition. In addition, it is critical for self-reporting purposes such as in assisted living where the users are asked to log their ADLs. However, data annotation becomes extremely challenging in real-world data collection scenarios, where the users have to provide annotations and labels on their own. Methods such as self-reports that rely on users’ memory and compliance are prone to human errors and become burdensome since they increase users’ cognitive load. In this article, we propose a light yet effective context-aware change point detection algorithm that is implemented and run on a smartwatch for facilitating data annotation for high-level ADLs. The proposed system detects the moments of transition from one to another activity and prompts the users to annotate their data. We leverage freely available Bluetooth low energy (BLE) information broadcasted by various devices to detect changes in environmental context. This contextual information is combined with a motion-based change point detection algorithm, which utilizes data from wearable motion sensors, to reduce the false positives and enhance the system's accuracy. Through real-world experiments, we show that the proposed system improves the quality and quantity of labels collected from users by reducing human errors while eliminating users’ cognitive load and facilitating the data annotation process.

Funder

NIH

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hypothesis Scoring for Confidence-Aware Blood Pressure Estimation With Particle Filters;IEEE Journal of Biomedical and Health Informatics;2023-09

2. A Boundary Consistency-Aware Multitask Learning Framework for Joint Activity Segmentation and Recognition With Wearable Sensors;IEEE Transactions on Industrial Informatics;2023-03

3. User Involvement in Training Smart Home Agents;International Conference on Human-Agent Interaction;2022-12-05

4. Deep Ensemble Learning for Human Activity Recognition Using Wearable Sensors via Filter Activation;ACM Transactions on Embedded Computing Systems;2022-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3