1. NVIDIA GTC Fall 2022. 2022 . CUTLASS: Python API, Enhancements, and CUTLASS 3.0 Preview (Announcing the CuTe programming model). https://static.rainfocus.com/nvidia/gtcfall2022/sess/1655735950588001cX98/supmat/A41131 NVIDIA GTC Fall 2022. 2022. CUTLASS: Python API, Enhancements, and CUTLASS 3.0 Preview (Announcing the CuTe programming model). https://static.rainfocus.com/nvidia/gtcfall2022/sess/1655735950588001cX98/supmat/A41131
2. Robert Atkey Michel Steuwer Sam Lindley and Christophe Dubach. 2017. Strategy Preserving Compilation for Parallel Functional Code. Robert Atkey Michel Steuwer Sam Lindley and Christophe Dubach. 2017. Strategy Preserving Compilation for Parallel Functional Code.
3. Somashekaracharya G. Bhaskaracharya , Julien Demouth , and Vinod Grover . 2020. Automatic Kernel Generation for Volta Tensor Cores. CoRR abs/2006.12645 ( 2020 ). arxiv:2006.12645 https://arxiv.org/abs/2006.12645 Somashekaracharya G. Bhaskaracharya, Julien Demouth, and Vinod Grover. 2020. Automatic Kernel Generation for Volta Tensor Cores. CoRR abs/2006.12645 (2020). arxiv:2006.12645 https://arxiv.org/abs/2006.12645
4. Marvel: A Data-Centric Approach for Mapping Deep Learning Operators on Spatial Accelerators
5. Tianqi Chen , Thierry Moreau , Ziheng Jiang , Lianmin Zheng , Eddie Q. Yan , Haichen Shen , Meghan Cowan , Leyuan Wang , Yuwei Hu , Luis Ceze , Carlos Guestrin , and Arvind Krishnamurthy . 2018 . TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018 , Carlsbad, CA, USA , October 8-10, 2018. 578–594. https://www.usenix.org/conference/osdi18/presentation/chen Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. 578–594. https://www.usenix.org/conference/osdi18/presentation/chen