1. Chipyard: Integrated Design, Simulation, and Implementation Framework for Custom SoCs;Amid Alon;IEEE Micro,2020
2. Steffen Baehr 2019. Low Latency Neural Networks using Heterogenous Resources on FPGA for the Belle II Trigger. arXiv:1910.13679 [hep-ex, physics:physics] (Oct 2019 ). http://arxiv.org/abs/1910.13679 Steffen Baehr 2019. Low Latency Neural Networks using Heterogenous Resources on FPGA for the Belle II Trigger. arXiv:1910.13679 [hep-ex, physics:physics] (Oct 2019). http://arxiv.org/abs/1910.13679
3. Yu-Hsin Chen Joel S. Emer and Vivienne Sze. 2018. Eyeriss v2: A flexible and high-performance accelerator for emerging deep neural networks. CoRR abs/1807.07928(2018). http://arxiv.org/abs/1807.07928 Yu-Hsin Chen Joel S. Emer and Vivienne Sze. 2018. Eyeriss v2: A flexible and high-performance accelerator for emerging deep neural networks. CoRR abs/1807.07928(2018). http://arxiv.org/abs/1807.07928
4. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks;Chen Yu-Hsin;IEEE Journal of Solid-State Circuits,2017
5. Hasan Genc 2021 . Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration . In 2021 58th ACM/IEEE Design Automation Conference (DAC). 769–774 . https://doi.org/10.1109/DAC18074.2021.9586216 10.1109/DAC18074.2021.9586216 Hasan Genc 2021. Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration. In 2021 58th ACM/IEEE Design Automation Conference (DAC). 769–774. https://doi.org/10.1109/DAC18074.2021.9586216