On Scalability of Association-rule-based Recommendation

Author:

Wu Zhiang1ORCID,Li Changsheng2,Cao Jie2,Ge Yong3

Affiliation:

1. Nanjing Audit University, Nanjing, China

2. Nanjing University of Finance and Economics, Nanjing, China

3. University of Arizona, Tucson, Arizona, USA

Abstract

The association-rule-based approach is one of the most common technologies for building recommender systems and it has been extensively adopted for commercial use. A variety of techniques, mainly including eligible rule selection and multiple rules combination, have been developed to create effective recommendation. Unfortunately, little attention has been paid to the scalability concern of rule-based recommendation methods. However, the computational complexity of rule-based methods shall increase drastically with the growth of both online customers and rules, which are usually several millions in typical e-commerce platforms. Moreover, the dynamic change of users’ actions requires rule-based methods make recommendations in nearly real-time, which further highlights the scalability issue of rule-based recommender systems. In this article, we present a distributed framework that can scale different association-rule-based recommendation methods in a unified way. Specifically, based on the summarization of existing rule-based approaches, a generic tree-type structure is defined to store separate kinds of patterns, and an efficient algorithm is designed for mining eligible patterns along with computing recommendation scores. To handle the ever-increasing number of online customers, a distributed framework is proposed, where two load-balanced strategies for partitioning tree are put forward to fit sparse and dense data, respectively. Extensive experiments on five real-life data sets demonstrate that the efficiency of association-rule-based recommender systems can be significantly improved by the proposed framework.

Funder

Industry Projects in Jiangsu S8T Pillar Program

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3