Improving accuracy in end-to-end packet loss measurement

Author:

Sommers Joel1,Barford Paul1,Duffield Nick2,Ron Amos1

Affiliation:

1. University of Wisconsin-Madison

2. AT&T Labs-Research

Abstract

Measurement and estimation of packet loss characteristics are challenging due to the relatively rare occurrence and typically short duration of packet loss episodes. While active probe tools are commonly used to measure packet loss on end-to-end paths, there has been little analysis of the accuracy of these tools or their impact on the network. The objective of our study is to understand how to measure packet loss episodes accurately with end-to-end probes. We begin by testing the capability of standard Poisson-modulated end-to-end measurements of loss in a controlled laboratory environment using IP routers and commodity end hosts. Our tests show that loss characteristics reported from such Poisson-modulated probe tools can be quite inaccurate over a range of traffic conditions. Motivated by these observations, we introduce a new algorithm for packet loss measurement that is designed to overcome the deficiencies in standard Poisson-based tools. Specifically, our method creates a probe process that (1) enables an explicit trade-off between accuracy and impact on the network, and (2) enables more accurate measurements than standard Poisson probing at the same rate. We evaluate the capabilities of our methodology experimentally by developing and implementing a prototype tool, called BADABING. The experiments demonstrate the trade-offs between impact on the network and measurement accuracy. We show that BADABING reports loss characteristics far more accurately than traditional loss measurement tools.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference39 articles.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Loss Process at an AQM Buffer;Journal of Sensor and Actuator Networks;2023-07-10

2. In-network Latency Nowcast Using Data Stream Learning Models;2023 International Wireless Communications and Mobile Computing (IWCMC);2023-06-19

3. Burst Ratio of Packet Losses in Individual Network Flows;Informatica;2023

4. Accurate Parallel Flow Monitoring for Loss Measurements;IEICE Transactions on Communications;2022-12-01

5. Flow-level loss detection with Δ-sketches;Proceedings of the Symposium on SDN Research;2022-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3