Combinatorial Algorithms for String Sanitization

Author:

Bernardini Giulia1,Chen Huiping2,Conte Alessio3,Grossi Roberto4,Loukides Grigorios2,Pisanti Nadia4,Pissis Solon P.5,Rosone Giovanna3,Sweering Michelle6

Affiliation:

1. University of Milano - Bicocca and CWI, Milano, Italy

2. King’s College London, London, UK

3. University of Pisa, Largo Pontecorvo, Pisa, Italy

4. University of Pisa and ERABLE Team, Pisa, Italy

5. CWI, Vrije Universiteit Amsterdam, and ERABLE Team, Amsterdam, NETHERLANDS

6. CWI, Amsterdam, NETHERLANDS

Abstract

String data are often disseminated to support applications such as location-based service provision or DNA sequence analysis. This dissemination, however, may expose sensitive patterns that model confidential knowledge (e.g., trips to mental health clinics from a string representing a user’s location history). In this article, we consider the problem of sanitizing a string by concealing the occurrences of sensitive patterns, while maintaining data utility, in two settings that are relevant to many common string processing tasks. In the first setting, we aim to generate the minimal-length string that preserves the order of appearance and frequency of all non-sensitive patterns. Such a string allows accurately performing tasks based on the sequential nature and pattern frequencies of the string. To construct such a string, we propose a time-optimal algorithm, TFS-ALGO. We also propose another time-optimal algorithm, PFS-ALGO, which preserves a partial order of appearance of non-sensitive patterns but produces a much shorter string that can be analyzed more efficiently. The strings produced by either of these algorithms are constructed by concatenating non-sensitive parts of the input string. However, it is possible to detect the sensitive patterns by “reversing” the concatenation operations. In response, we propose a heuristic, MCSR-ALGO, which replaces letters in the strings output by the algorithms with carefully selected letters, so that sensitive patterns are not reinstated, implausible patterns are not introduced, and occurrences of spurious patterns are prevented. In the second setting, we aim to generate a string that is at minimal edit distance from the original string, in addition to preserving the order of appearance and frequency of all non-sensitive patterns. To construct such a string, we propose an algorithm, ETFS-ALGO, based on solving specific instances of approximate regular expression matching. We implemented our sanitization approach that applies TFS-ALGO, PFS-ALGO, and then MCSR-ALGO, and experimentally show that it is effective and efficient. We also show that TFS-ALGO is nearly as effective at minimizing the edit distance as ETFS-ALGO, while being substantially more efficient than ETFS-ALGO.

Funder

Italian Ministry of University and Research

Netherlands Organization for Scientific Research

Chinese Government Scholarship

University of Pisa

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Breaking Truss-based and Core-based Communities;ACM Transactions on Knowledge Discovery from Data;2024-04-12

2. Hide and Mine in Strings: Hardness, Algorithms, and Experiments;IEEE Transactions on Knowledge and Data Engineering;2022

3. String Editing Under Pattern Constraints;Communications in Computer and Information Science;2022

4. Differentially Private String Sanitization for Frequency-Based Mining Tasks;2021 IEEE International Conference on Data Mining (ICDM);2021-12

5. On Breaking Truss-Based Communities;Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining;2021-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3