Forecasting Urban Sensory Values through Learning Attention-adjusted Graph Spatio-temporal Networks

Author:

Lu Yi-Ju1,Li Cheng-Te1

Affiliation:

1. National Cheng Kung University, Taiwan

Abstract

Forecasting spatio-temporal correlated time series of sensor values is crucial in urban applications, such as air pollution alerts, biking resource management, and intelligent transportation systems. While recent advances exploit graph neural networks (GNN) to better learn spatial and temporal dependencies between sensors, they cannot model time-evolving spatio-temporal correlations (STC) between sensors and require pre-defined graphs, which are neither always available nor totally reliable, and target at only a specific type of sensor data at one time. Moreover, since the form of time-series fluctuation is varied across sensors, a model needs to learn fluctuation modulation. To tackle these issues, in this work, we propose a novel GNN-based model, Attention-adjusted Graph Spatio-Temporal Network (AGSTN). In AGSTN, multi-graph convolution with sequential learning is developed to learn time-evolving STC. Fluctuation modulation is realized by a proposed attention adjustment mechanism. Experiments on three sensor data, air quality, bike demand, and traffic flow, exhibit that AGSTN outperforms the state-of-the-art methods.

Funder

National Science and Technology Council (NSTC) of Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Reference35 articles.

1. Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive graph convolutional recurrent network for traffic forecasting. In Advances in Neural Information Processing Systems. 17804–17815.

2. Deep spatial–temporal sequence modeling for multi-step passenger demand prediction

3. Exploiting Spatio-Temporal Correlations with Multiple 3D Convolutional Neural Networks for Citywide Vehicle Flow Prediction

4. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting;Cui Z.;IEEE Trans. Intell. Transport. Syst.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3