Multi-aspect Understanding with Cooperative Graph Attention Networks for Medical Dialogue Information Extraction

Author:

Lin Rui1ORCID,Fan Jing2ORCID,Wu Haifeng2ORCID

Affiliation:

1. Yunnan University, China

2. Yunnan Minzu University, China

Abstract

Medical dialogue information extraction is an important but challenging task for Electronic Medical Records. Existing medical information extraction methods ignore the crucial information of sentence and multi-level dependency in dialogue, which limits their effectiveness for capturing essential medical information. To address these issues, we present a novel Multi-aspect Understanding with Cooperative Graph Attention Networks for Medical Dialogue Information Extraction to capture multi-aspect sentence information and multi-level dependency information from the dialogue. First, we propose the multi-aspect sentence encoder to capture various features from different perspectives. Second, we propose double graph attention networks to model the dependency features from intra-window and inter-window, respectively. Extensive experiments on a benchmark dataset have well-validated the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

MOE (Ministry of Education in China) Project of Humanities and Social Sciences

Yunnan Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference47 articles.

1. Daniel Adiwardana Minh-Thang Luong David R. So Jamie Hall Noah Fiedel Romal Thoppilan Zi Yang Apoorv Kulshreshtha Gaurav Nemade Yifeng Lu and Quoc V. Le. 2020. Towards a human-like open-domain chatbot. Retrieved from https://arxiv.org/abs/2001.09977

2. Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Proceedings of NeurIPS, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). Retrieved from https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

3. Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral networks and locally connected networks on graphs. In Proceedings of ICLR.

4. A shortest path dependency kernel for relation extraction

5. Learning phrase representations using RNN encoder-decoder for statistical machine translation;Cho Kyunghyun;Proceedings of EMNLP,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3