Efficient Residual Neural Network for Human Activity Recognition using WiFi CSI Signals

Author:

Hnoohom Narit1ORCID,Mekruksavanich Sakorn2ORCID,Theeramunkong Thanaruk3ORCID,Jitpattanakul Anuchit4ORCID

Affiliation:

1. Department of Computer Engineering, Faculty of Engineering, Mahidol University, Thailand

2. Department of Computer Engineering, School of Information and Communication Technology, University of Phayao, Thailand

3. School of Information and Computer Technology, Sirindhorn International Institute of Technology, Thammasat University, Thailand

4. Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Thailand and Intelligent and Nonlinear Dynamic Innovations Research Center, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Thailand

Funder

National Science, Research and Innovation Fund (NSRF), King Mongkut's University of Technology North Bangkok

Thailand Research Fund under grant number RTA6080013, and the TRF Research Team Promotion Grant (RTA)

Thammasat University?s research fund, Center of Excellence in Intelligent Informatics, Speech and Language Technology and Service Innovation (CILS), and Intelligent Informatics and Service Innovation (IISI) Research Center

Publisher

ACM

Reference14 articles.

1. A Review of Multiple-Person Abnormal Activity Recognition

2. Attention-Based Hybrid Deep Learning Network for Human Activity Recognition Using WiFi Channel State Information

3. Zhuravchak, A., Kapshii, O. and Pournaras, E. 2021. Human activity recognition based on Wi-Fi CSI data-a deep neural network approach. In the 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2021), (Leuven, Belgium), Elsevier B.V., 59-66.

4. Dang X. Cao Y. Hao Z. and Liu Y. 2020. WiGId: Indoor group identification with CSI-based random forest. Sensors 2020 20 (16) 4607. https://doi.org/10.3390/s20164607

5. CSI-Based Human Continuous Activity Recognition Using GMM–HMM

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3