Visual Security Index Combining CNN and Filter for Perceptually Encrypted Light Field Images

Author:

Wen Wenying1ORCID,Huang Minghui1ORCID,Zhang Yushu2ORCID,Fang Yuming1ORCID,Zuo Yifan1ORCID

Affiliation:

1. Jiangxi University of Finance and Economics, China

2. Nanjing University of Aeronautics and Astronautics, China

Abstract

Visual security index (VSI) represents a quantitative index for the visual security evaluation of perceptually encrypted images. Recently, the research on visual security of encrypted light field (LF) images faces two challenges. One is that the existing perceptually encrypted image databases are often too small, which is easy to cause overfitting in convolutional neural network (CNN). The other is that existing VSI models did not take a full account the intrinsic characteristics of the LF images and highly relied on handcrafted feature extraction. In this article, we construct a new database of perceptually encrypted LF images, called the PE-SLF, which is 2.6 times as big as the existing largest perceptual encrypted image database. Moreover, a novel visual security index (VSI) model is proposed by taking into full consideration the intrinsic spatial-angular characteristics of the LF images and the outstanding capabilities of CNN in feature extraction. First, we exploit CNN to detect the texture and structure features of encrypted sub-aperture images in the spatial domain. Second, we apply the Gabor filter to detect the Gabor feature over the epi-polar plane images in angular domain. Last, the spatial and angular similarity measurements are subsequently calculated for jointly yielding the final visual security score. Experimental results on the constructed PE-SLF demonstrate that the proposed VSI model is closer to the perception of HVS in visual security evaluation of encrypted LF images compared to other classical and state-of-the-art models.

Funder

Natural Science Foundation of China

Double Thousand Plan of Jiangxi Province

Outstanding Youth Fund Program of Jiangxi Province

Natural Science Foundation of Jiangxi Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3