Achieving communication coverage in testing

Author:

Robinson-Mallett Christopher1,Hierons Robert M.2,Liggesmeyer Peter3

Affiliation:

1. Fraunhofer IESE, Kaiserslautern, Germany

2. Brunel University, Uxbridge, United Kingdom

3. University of Kaiserslautern, Germany

Abstract

This paper considers the problem of testing the communication between components of a timed distributed software system. We assume that communication is specified using timed interface automata and use computational tree logic (CTL) to define coverage criteria that refer to send- and receive-statements and communication paths. Given such a state-based specification of a distributed system and a concrete coverage goal, a model checker is used in order to determine the coverage provided by a finite set of test-cases, expressed using sequence diagrams. If parts of the specification remain uncovered then a goal is derived so that the model checker can be used to generate test cases that increase the coverage provided by the test suite. A major benefit of the presented approach is the generation of a potentially minimal set of test cases with the confidence that every interaction between components is executed during testing. A potential additional benefit of this approach is that it provides a visual description of the state based testing of distributed systems, which may be beneficial in other contexts such as education and program comprehension. The complexity of our approach strongly depends on the input model, the testing goal, and the model checking algorithm, which is implemented in the used tool. While a particular model checker, UPPAAL, was used, it should be relatively straightforward to adapt the approach for use with other CTL based model checkers.

Publisher

Association for Computing Machinery (ACM)

Reference28 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deriving Interaction Scenarios for Timed Distributed Systems by Symbolic Execution;Advances in Model and Data Engineering in the Digitalization Era;2021

2. Test selection for traces refinement;Theoretical Computer Science;2015-01

3. A HW/SW co-verification framework for SystemC;ACM Transactions on Embedded Computing Systems;2013-03

4. Combining Model Checking and Testing in a Continuous HW/SW Co-verification Process;Tests and Proofs;2009

5. Using communication coverage criteria and partial model generation to assist software integration testing;Software Quality Journal;2008-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3