STABILIZER

Author:

Curtsinger Charlie1,Berger Emery D.1

Affiliation:

1. University of Massachusetts Amherst, Amherst, MA, USA

Abstract

Researchers and software developers require effective performance evaluation. Researchers must evaluate optimizations or measure overhead. Software developers use automatic performance regression tests to discover when changes improve or degrade performance. The standard methodology is to compare execution times before and after applying changes. Unfortunately, modern architectural features make this approach unsound. Statistically sound evaluation requires multiple samples to test whether one can or cannot (with high confidence) reject the null hypothesis that results are the same before and after. However, caches and branch predictors make performance dependent on machine-specific parameters and the exact layout of code, stack frames, and heap objects. A single binary constitutes just one sample from the space of program layouts, regardless of the number of runs. Since compiler optimizations and code changes also alter layout, it is currently impossible to distinguish the impact of an optimization from that of its layout effects. This paper presents Stabilizer, a system that enables the use of the powerful statistical techniques required for sound performance evaluation on modern architectures. Stabilizer forces executions to sample the space of memory configurations by repeatedly re-randomizing layouts of code, stack, and heap objects at runtime. Stabilizer thus makes it possible to control for layout effects. Re-randomization also ensures that layout effects follow a Gaussian distribution, enabling the use of statistical tests like ANOVA. We demonstrate Stabilizer's efficiency (<7% median overhead) and its effectiveness by evaluating the impact of LLVM's optimizations on the SPEC CPU2006 benchmark suite. We find that, while -O2 has a significant impact relative to -O1, the performance impact of -O3 over -O2 optimizations is indistinguishable from random noise.

Publisher

Association for Computing Machinery (ACM)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Randomize the Running Function When It Is Disclosed;IEEE Transactions on Computers;2024-06

2. Hot Under the Hood: An Analysis of Ambient Temperature Impact on Heterogeneous Edge Platforms;Proceedings of the 6th International Workshop on Edge Systems, Analytics and Networking;2023-05-08

3. Analysing Static Source Code Features to Determine a Correlation to Steady State Performance in Java Microbenchmarks;Companion of the 2023 ACM/SPEC International Conference on Performance Engineering;2023-04-15

4. MagBox: Keep the risk functions running safely in a magic box;Future Generation Computer Systems;2023-03

5. KPointer: Keep the code pointers on the stack point to the right code;Computers & Security;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3