Pose Uncertainty Aware Movement Synchrony Estimation via Spatial-Temporal Graph Transformer

Author:

Li Jicheng1ORCID,Bhat Anjana2ORCID,Barmaki Roghayeh3ORCID

Affiliation:

1. Computer Information and Sciences, University of Delaware, United States

2. Department of Physical Therapy, University of Delaware, United States

3. Computer and Information Sciences, University of Delaware, United States

Publisher

ACM

Reference66 articles.

1. Movement Synchrony and Facial Synchrony as Diagnostic Features of Depression

2. Ruwen Bai Min Li Bo Meng Fengfa Li Miao Jiang Junxing Ren and Degang Sun. 2021. Hierarchical Graph Convolutional Skeleton Transformer for Action Recognition. arxiv:2109.02860 [cs.CV] Ruwen Bai Min Li Bo Meng Fengfa Li Miao Jiang Junxing Ren and Degang Sun. 2021. Hierarchical Graph Convolutional Skeleton Transformer for Action Recognition. arxiv:2109.02860 [cs.CV]

3. Donald  J Berndt and James Clifford . 1994 . Using dynamic time warping to find patterns in time series .. In KDD workshop, Vol. 10 . Seattle, WA, USA:, 359–370. Donald J Berndt and James Clifford. 1994. Using dynamic time warping to find patterns in time series.. In KDD workshop, Vol. 10. Seattle, WA, USA:, 359–370.

4. Cristian Buciluundefined , Rich Caruana , and Alexandru Niculescu-Mizil . 2006 . Model Compression. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ( Philadelphia, PA, USA) (KDD ’06). Association for Computing Machinery, New York, NY, USA, 535–541. https://doi.org/10.1145/1150402.1150464 10.1145/1150402.1150464 Cristian Buciluundefined, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model Compression. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Philadelphia, PA, USA) (KDD ’06). Association for Computing Machinery, New York, NY, USA, 535–541. https://doi.org/10.1145/1150402.1150464

5. Gabriele Calabrò Andrea Bizzego Stefano Cainelli Cesare Furlanello and Paola Venuti. 2021. M-MS: A Multi-Modal Synchrony Dataset to Explore Dyadic Interaction in ASD. In Progresses in Artificial Intelligence and Neural Systems. Springer 543–553. Gabriele Calabrò Andrea Bizzego Stefano Cainelli Cesare Furlanello and Paola Venuti. 2021. M-MS: A Multi-Modal Synchrony Dataset to Explore Dyadic Interaction in ASD. In Progresses in Artificial Intelligence and Neural Systems. Springer 543–553.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MMASD: A Multimodal Dataset for Autism Intervention Analysis;INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION;2023-10-09

2. Social Visual Behavior Analytics for Autism Therapy of Children Based on Automated Mutual Gaze Detection;Proceedings of the 8th ACM/IEEE International Conference on Connected Health: Applications, Systems and Engineering Technologies;2023-06-21

3. A Fine-Grained Bird Classification Method Based on Attention and Decoupled Knowledge Distillation;Animals;2023-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3