Affiliation:
1. DI, Università degli Studi di Milano
2. EBTIC, Khalifa University of Science, Technology and Research
3. C2PS, Khalifa University
4. Free University of Bozen
5. University of Bergen
Abstract
Internet of Things (IoT) is composed of physical devices, communication networks, and services provided by edge systems and over-the-top applications. IoT connects billions of devices that collect data from the physical environment, which are pre-processed at the edge and then forwarded to processing services at the core of the infrastructure, on top of which cloud-based applications are built and provided to mobile end users. IoT comes with important advantages in terms of applications and added value for its users, making their world smarter and simpler. These advantages, however, are mitigated by the difficulty of guaranteeing IoT trustworthiness, which is still in its infancy. IoT trustworthiness is a must especially in critical domains (e.g., health, transportation) where humans become new components of an IoT system and their life is put at risk by system malfunctioning or breaches. In this article, we put forward the idea that trust in IoT can be boosted if and only if its automation and adaptation processes are based on trustworthy data. We therefore depart from a scenario that considers the quality of a single decision as the main goal of an IoT system and consider the trustworthiness of collected data as a fundamental requirement at the basis of a trustworthy IoT environment. We therefore define a methodology for data collection that filters untrusted data out according to trust rules evaluating the status of the devices collecting data and the collected data themselves. Our approach is based on blockchain and smart contracts and collects data whose trustworthiness and integrity are proven over time. The methodology balances trustworthiness and privacy and is experimentally evaluated in real-world and simulated scenarios using Hyperledger fabric blockchain.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献