Human-computer Coalition Formation in Weighted Voting Games

Author:

Mash Moshe1,Fairstein Roy2,Bachrach Yoram3,Gal Kobi4,Zick Yair5

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA, USA

2. Ben-Gurion University of the Negev, Israel

3. Google DeepMind, England

4. Ben-Gurion University of the Negev and the University of Edinburgh, U.K.

5. National University of Singapore, Singapore

Abstract

This article proposes a negotiation game, based on the weighted voting paradigm in cooperative game theory, where agents need to form coalitions and agree on how to share the gains. Despite the prevalence of weighted voting in the real world, there has been little work studying people’s behavior in such settings. This work addresses this gap by combining game-theoretic solution concepts with machine learning models for predicting human behavior in such domains. We present a five-player online version of a weighted voting game in which people negotiate to create coalitions. We provide an equilibrium analysis of this game and collect hundreds of instances of people’s play in the game. We show that a machine learning model with features based on solution concepts from cooperative game theory (in particular, an extension of the Deegan-Packel Index) provide a good prediction of people’s decisions to join coalitions in the game. We designed an agent that uses the prediction model to make offers to people in this game and was able to outperform other people in an extensive empirical study. These results demonstrate the benefit of incorporating concepts from cooperative game theory in the design of agents that interact with people in group decision-making settings.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3