Invitation to data reduction and problem kernelization

Author:

Guo Jiong1,Niedermeier Rolf1

Affiliation:

1. Friedrich-Schiller-Universitat Jena, Jena, Germany

Abstract

To solve NP-hard problems, polynomial-time preprocessing is a natural and promising approach. Preprocessing is based on data reduction techniques that take a problem's input instance and try to perform a reduction to a smaller, equivalent problem kernel. Problem kernelization is a methodology that is rooted in parameterized computational complexity. In this brief survey, we present data reduction and problem kernelization as a promising research field for algorithm and complexity theory.

Publisher

Association for Computing Machinery (ACM)

Cited by 267 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preprocessing to reduce the search space: Antler structures for feedback vertex set;Journal of Computer and System Sciences;2024-09

2. Search-Space Reduction via Essential Vertices;SIAM Journal on Discrete Mathematics;2024-08-30

3. Fast Parameterized Preprocessing for Polynomial-Time Solvable Graph Problems;Communications of the ACM;2024-03-25

4. Sparsification Lower Bounds for List H -Coloring;ACM Transactions on Computation Theory;2023-12-12

5. Why we couldn’t prove SETH hardness of the Closest Vector Problem for even norms!;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3