Verifying and Quantifying Side-channel Resistance of Masked Software Implementations

Author:

Gao Pengfei1,Zhang Jun1,Song Fu1,Wang Chao2

Affiliation:

1. ShanghaiTech University, Shanghai, China

2. University of Southern California, Los Angeles, CA, USA

Abstract

Power side-channel attacks, capable of deducing secret data using statistical analysis, have become a serious threat. Random masking is a widely used countermeasure for removing the statistical dependence between secret data and side-channel information. Although there are techniques for verifying whether a piece of software code is perfectly masked, they are limited in accuracy and scalability. To bridge this gap, we propose a refinement-based method for verifying masking countermeasures. Our method is more accurate than prior type-inference-based approaches and more scalable than prior model-counting-based approaches using SAT or SMT solvers. Indeed, our method can be viewed as a gradual refinement of a set of type-inference rules for reasoning about distribution types. These rules are kept abstract initially to allow fast deduction and then made concrete when the abstract version is not able to resolve the verification problem. We also propose algorithms for quantifying the amount of side-channel information leakage from a software implementation using the notion of quantitative masking strength. We have implemented our method in a software tool and evaluated it on cryptographic benchmarks including AES and MAC-Keccak. The experimental results show that our method significantly outperforms state-of-the-art techniques in terms of accuracy and scalability.

Funder

U.S. National Science Foundation

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compositional Verification of First-Order Masking Countermeasures against Power Side-Channel Attacks;ACM Transactions on Software Engineering and Methodology;2023-12-05

2. Compositional Verification of Efficient Masking Countermeasures against Side-Channel Attacks;Proceedings of the ACM on Programming Languages;2023-10-16

3. Thwarting code-reuse and side-channel attacks in embedded systems;Computers & Security;2023-10

4. Securing Optimized Code Against Power Side Channels;2023 IEEE 36th Computer Security Foundations Symposium (CSF);2023-07

5. LeakageVerif: Efficient and Scalable Formal Verification of Leakage in Symbolic Expressions;IEEE Transactions on Software Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3