1. [ Achilleos et al ., 2020] Kleo G Achilleos , Stephanos Leandrou , Nicoletta Prentzas , Panayiotis A Kyriacou , Antonis C Kakas , and Constantinos S Pattichis . 2020. Extracting explainable assessments of Alzheimer’s disease via machine learning on brain MRI imaging data. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE) . IEEE , 1036–1041. [Achilleos et al., 2020] Kleo G Achilleos, Stephanos Leandrou, Nicoletta Prentzas, Panayiotis A Kyriacou, Antonis C Kakas, and Constantinos S Pattichis. 2020. Extracting explainable assessments of Alzheimer’s disease via machine learning on brain MRI imaging data. In 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 1036–1041.
2. ] Zeynettin Akkus, Alfiia Galimzianova, Assaf Hoogi, Daniel L Rubin, and Bradley J Erickson. 2017. Deep learning for brain MRI segmentation: state of the art and future directions; al Akkus;Journal of digital imaging,2017
3. ] Fouzia Altaf, Syed MS Islam, Naveed Akhtar, and Naeem Khalid Janjua. 2019. Going deep in medical image analysis: concepts, methods, challenges, and future directions; al Altaf;IEEE Access,2019
4. ] Alois Alzheimer. 1907. Uber eigenartige Erkrankung der Hirnrinde;All Z Psychiatr,1907
5. [ Bäckström et al . , 2018 ] Karl Bäckström, Mahmood Nazari, Irene Yu-Hua Gu, and Asgeir Store Jakola. 2018. An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images . In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 149–153. [Bäckström et al., 2018] Karl Bäckström, Mahmood Nazari, Irene Yu-Hua Gu, and Asgeir Store Jakola. 2018. An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 149–153.