Compositional Semantics for Shared-Variable Concurrency

Author:

Svyatlovskiy Mikhail1ORCID,Mermelstein Shai1ORCID,Lahav Ori1ORCID

Affiliation:

1. Tel Aviv University, Tel Aviv, Israel

Abstract

We revisit the fundamental problem of defining a compositional semantics for a concurrent programming language under sequentially consistent memory with the aim of equating the denotations of pieces of code if and only if these pieces induce the same behavior under all program contexts. While the denotational semantics presented by Brookes [Information and Computation 127, 2 (1996)] has been considered a definitive solution, we observe that Brookes's full abstraction result crucially relies on the availability of an impractical whole-memory atomic read-modify-write instruction. In contrast, we consider a language with standard primitives, which apply to a single variable. For that language, we propose an alternative denotational semantics based on traces that track program write actions together with the writes expected from the environment, and equipped with several closure operators to achieve necessary abstraction. We establish the adequacy of the semantics, and demonstrate full abstraction for the case that the analyzed code segment is loop-free. Furthermore, we show that by including a whole-memory atomic read in the language, one obtains full abstraction for programs with loops. To gain confidence, our results are fully mechanized in Coq.

Funder

European Research Council

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3