High-Performance Reconfigurable DNN Accelerator on a Bandwidth-limited Embedded System

Author:

Hu Xianghong1ORCID,Huang Hongmin1ORCID,Li Xueming1ORCID,Zheng Xin1ORCID,Ren Qinyuan21ORCID,He Jingyu31ORCID,Xiong Xiaoming11ORCID

Affiliation:

1. Guangdong University of Technology, China

2. Zhejiang University, China

3. Hong Kong University of Science and Technology, Hong Kong

Abstract

Deep convolutional neural networks (DNNs) have been widely used in many applications, particularly in machine vision. It is challenging to accelerate DNNs on embedded systems because real-world machine vision applications should reserve a lot of external memory bandwidth for other tasks, such as video capture and display while leaving little bandwidth for accelerating DNNs. In order to solve this issue, in this study, we propose a high-throughput accelerator, called reconfigurable tiny neural-network accelerator (ReTiNNA) for the bandwidth-limited system, and present a real-time object detection system for the high-resolution video image. We first present a dedicated computation engine that takes different data mapping methods for various filter types to improve data reuse and reduce hardware resources. We then propose an adaptive layer-wise tiling strategy that tiles the feature maps into strips to reduce the control complexity of data transmission dramatically and to improve the efficiency of data transmission. Finally, a design space exploration (DSE) approach is presented to explore design space more accurately in the case of insufficient bandwidth to improve the performance of the low-bandwidth accelerator. With a low bandwidth of 2.23 GB/s and a low hardware consumption of 90.261K LUTs and 448 DSPs, ReTiNNA can still achieve a high performance of 155.86 GOPS on VGG16 and 68.20 GOPS on ResNet50, which is better than other state-of-the-art designs implemented on FPGA devices. Furthermore, the real-time object detection system can achieve a high object detection speed of 19 fps for high-resolution video.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3