Author:
Teodorescu Radu,Torrellas Josep
Abstract
Within-die process variation causes individual cores in a ChipMultiprocessor (CMP) to differ substantially in both static powerconsumed and maximum frequency supported. In this environment,ignoring variation effects whenscheduling applications or when managing power withDynamic Voltage and Frequency Scaling (DVFS) is suboptimal. This paper proposes variation-aware algorithms for applicationscheduling and power management. One such power managementalgorithm, called {\em LinOpt}, uses linear programmingto find the best voltage and frequency levels for each of thecores in the CMP --- maximizing throughput at a given power budget.In a 20-core CMP, the combination of variation-awareapplication scheduling and {\em LinOpt} increases the averagethroughput by 12--17\% and reduces the average $ED^2$ by 30--38\%--- all relative to using variation-awarescheduling together with a simple extension to Intel's Foxtonpower management algorithm.
Publisher
Association for Computing Machinery (ACM)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献