The Design and Evaluation of a Mobile System for Rapid Diagnostic Test Interpretation

Author:

Park Chunjong1,Ngo Hung1,Lavitt Libby Rose1,Karuri Vincent2,Bhatt Shiven2,Lubell-Doughtie Peter2,Shankar Anuraj H.3,Ndwiga Leonard4,Osoti Victor4,Wambua Juliana K.4,Bejon Philip4,Ochola-Oyier Lynette Isabella4,Chilver Monique5,Stocks Nigel5,Lyon Victoria1,Lutz Barry R.1,Thompson Matthew1,Mariakakis Alex6,Patel Shwetak7

Affiliation:

1. University of Washington, USA

2. Ona, One Padmore Place, George Padmore Lane, Nairobi, Kenya

3. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Old Road Campus, Roosevelt Drive, Oxford, United Kingdom

4. KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya

5. University of Adelaide, Adelaide, SA, Australia

6. University of Toronto, Toronto, ON, Canada

7. University of Washington, Seattle, WA, USA

Abstract

Rapid diagnostic tests (RDTs) provide point-of-care medical screening without the need for expensive laboratory equipment. RDTs are theoretically straightforward to use, yet their analog colorimetric output leaves room for diagnostic uncertainty and error. Furthermore, RDT results within a community are kept isolated unless they are aggregated by healthcare workers, limiting the potential that RDTs can have in supporting public health efforts. In light of these issues, we present a system called RDTScan for detecting and interpreting lateral flow RDTs with a smartphone. RDTScan provides real-time guidance for clear RDT image capture and automatic interpretation for accurate diagnostic decisions. RDTScan is structured to be quickly configurable to new RDT designs by requiring only a template image and some metadata about how the RDT is supposed to be read, making it easier to extend than a data-driven approach. Through a controlled lab study, we demonstrate that RDTScan's limit-of-detection can match, and even exceed, the performance of expert readers who are interpreting the physical RDTs themselves. We then present two field evaluations of smartphone apps built on the RDTScan system: (1) at-home influenza testing in Australia and (2) malaria testing by community healthcare workers in Kenya. RDTScan achieved 97.5% and 96.3% accuracy compared to RDT interpretation by experts in the Australia Flu Study and the Kenya Malaria Study, respectively.

Funder

Bill & Melinda Gates Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3