Attack-Resistant Location Estimation in Wireless Sensor Networks

Author:

Liu Donggang1,Ning Peng2,Liu An2,Wang Cliff3,Du Wenliang Kevin4

Affiliation:

1. The University of Texas at Arlington

2. North Carolina State University

3. Army Research Office

4. Syracuse University

Abstract

Many sensor network applications require sensors' locations to function correctly. Despite the recent advances, location discovery for sensor networks in hostile environments has been mostly overlooked. Most of the existing localization protocols for sensor networks are vulnerable in hostile environments. The security of location discovery can certainly be enhanced by authentication. However, the possible node compromises and the fact that location determination uses certain physical features (e.g., received signal strength) of radio signals make authentication not as effective as in traditional security applications. This article presents two methods to tolerate malicious attacks against range-based location discovery in sensor networks. The first method filters out malicious beacon signals on the basis of the “consistency” among multiple beacon signals, while the second method tolerates malicious beacon signals by adopting an iteratively refined voting scheme. Both methods can survive malicious attacks even if the attacks bypass authentication, provided that the benign beacon signals constitute the majority of the beacon signals. This article also presents the implementation and experimental evaluation (through both field experiments and simulation) of all the secure and resilient location estimation schemes that can be used on the current generation of sensor platforms (e.g., MICA series of motes), including the techniques proposed in this article, in a network of MICAz motes. The experimental results demonstrate the effectiveness of the proposed methods, and also give the secure and resilient location estimation scheme most suitable for the current generation of sensor networks.

Funder

Division of Computer and Network Systems

Army Research Office

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,General Computer Science

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3