Reliability or Sustainability

Author:

Kartakis Sokratis1,Yang Shusen2ORCID,Mccann Julie A.3

Affiliation:

1. Intel Labs EU and Imperial College London, UK

2. Xi’an Jiaotong Univerity, Xi’an City, China

3. Imperial College London, London, UK

Abstract

As a typical cyber-physical system (CPS), smart water distribution networks require monitoring of underground water pipes with high sample rates for precise data analysis and water network control. Due to poor underground wireless channel quality and long-range communication requirements, high transmission power is typically adopted to communicate high-speed sensor data streams, posing challenges for long-term sustainable monitoring. In this article, we develop the first sustainable water sensing system, exploiting energy harvesting opportunities from water flows. Our system does this by scheduling the transmission of a subset of the data streams, whereas other correlated streams are estimated using autoregressive models based on the sound-velocity propagation of pressure signals inside water networks. To compute the optimal scheduling policy, we formalize a stochastic optimization problem to maximize the estimation reliability while ensuring the system’s sustainable operation under dynamic conditions. We develop data transmission scheduling (DTS), an asymptotically optimal scheme, and FAST-DTS, a lightweight online algorithm that can adapt to arbitrary energy and correlation dynamics. Using more than 170 days of real data from our smart water system deployment and conducting in vitro experiments to our small-scale testbed, our evaluation demonstrates that Fast-DTS significantly outperforms three alternatives, considering data reliability, energy utilization, and sustainable operation.

Funder

NEC Corporation, Japan

China 1000 Young Talents Program

Young Talent Support Plan of Xian Jiaotong University, China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3