Affiliation:
1. Ben-Gurion University, Israel
2. Royal Holloway, University of London, Egham, TW, UK
Abstract
Supporting inductive reasoning is an essential component is any framework of use in computer science. To do so, the logical framework must extend that of first-order logic. Transitive closure logic is a known extension of first-order logic that is particularly straightforward to automate. While other extensions of first-order logic with inductive definitions are
a priori
parametrized by a set of inductive definitions, the addition of a single transitive closure operator has the advantage of uniformly capturing all finitary inductive definitions. To further improve the reasoning techniques for transitive closure logic, we here present an
infinitary
proof system for it, which is an
infinite descent
–style counterpart to the existing (explicit induction) proof system for the logic. We show that the infinitary system is complete for the standard semantics and subsumes the explicit system. Moreover, the uniformity of the transitive closure operator allows semantically meaningful complete restrictions to be defined using simple syntactic criteria. Consequently, the restriction to regular infinitary (i.e.,
cyclic
) proofs provides the basis for an effective system for automating inductive reasoning.
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Mathematics,Logic,General Computer Science,Theoretical Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献