Relative Error Streaming Quantiles

Author:

Cormode Graham1ORCID,Karnin Zohar2ORCID,Liberty Edo3ORCID,Thaler Justin4ORCID,Veselý Pavel5ORCID

Affiliation:

1. University of Warwick, UK

2. Amazon, USA

3. Pinecone, USA

4. Georgetown University, USA

5. Charles University, Czech Republic

Abstract

Estimating ranks, quantiles, and distributions over streaming data is a central task in data analysis and monitoring. Given a stream of n items from a data universe equipped with a total order, the task is to compute a sketch (data structure) of size polylogarithmic in n . Given the sketch and a query item y , one should be able to approximate its rank in the stream, i.e., the number of stream elements smaller than or equal to y . Most works to date focused on additive ε n error approximation, culminating in the KLL sketch that achieved optimal asymptotic behavior. This article investigates multiplicative (1± ε)-error approximations to the rank. Practical motivation for multiplicative error stems from demands to understand the tails of distributions, and hence for sketches to be more accurate near extreme values. The most space-efficient algorithms due to prior work store either O(log (ε 2 n )/ε 2 ) or O (log 3n )/ε) universe items. We present a randomized sketch storing O (log 1.5n )/ε) items that can (1± ε)-approximate the rank of each universe item with high constant probability; this space bound is within an \(O(\sqrt {\log (\varepsilon n)})\) factor of optimal. Our algorithm does not require prior knowledge of the stream length and is fully mergeable, rendering it suitable for parallel and distributed computing environments.

Funder

European Research Council

Center for Foundations of Modern Computer Science

NSF SPX

NSF CAREER

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference28 articles.

1. Mergeable summaries;Agarwal Pankaj K.;ACM Trans. Datab. Syst.,2013

2. Rakesh Agrawal and Arun Swami . 1995 . A one-pass space-efficient algorithm for finding quantiles . In Proceedings of the 7th International Conference on Management of Data (COMAD’95) . Rakesh Agrawal and Arun Swami. 1995. A one-pass space-efficient algorithm for finding quantiles. In Proceedings of the 7th International Conference on Management of Data (COMAD’95).

3. Arvind Arasu and Gurmeet Singh Manku . 2004 . Approximate counts and quantiles over sliding windows . In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’04) . ACM, 286–296. Arvind Arasu and Gurmeet Singh Manku. 2004. Approximate counts and quantiles over sliding windows. In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’04). ACM, 286–296.

4. Omri Ben-Eliezer Rajesh Jayaram David P. Woodruff and Eylon Yogev. 2022. A framework for adversarially robust streaming algorithms. J. ACM 69 2 (2022) 17:1–17:33. Omri Ben-Eliezer Rajesh Jayaram David P. Woodruff and Eylon Yogev. 2022. A framework for adversarially robust streaming algorithms. J. ACM 69 2 (2022) 17:1–17:33.

5. Graham Cormode , Flip Korn , S. Muthukrishnan , and Divesh Srivastava . 2005 . Effective computation of biased quantiles over data streams . In Proceedings of the 21st International Conference on Data Engineering (ICDE’05) . IEEE Computer Society, 20–31. Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. 2005. Effective computation of biased quantiles over data streams. In Proceedings of the 21st International Conference on Data Engineering (ICDE’05). IEEE Computer Society, 20–31.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3