ClickRank

Author:

Zhu Guangyu1,Mishne Gilad2

Affiliation:

1. University of Maryland, College Park

2. Yahoo! Labs

Abstract

User browsing information, particularly non-search-related activity, reveals important contextual information on the preferences and intents of Web users. In this article, we demonstrate the importance of mining general Web user behavior data to improve ranking and other Web-search experience, with an emphasis on analyzing individual user sessions for creating aggregate models. In this context, we introduce ClickRank , an efficient, scalable algorithm for estimating Webpage and Website importance from general Web user-behavior data. We lay out the theoretical foundation of ClickRank based on an intentional surfer model and discuss its properties. We quantitatively evaluate its effectiveness regarding the problem of Web-search ranking, showing that it contributes significantly to retrieval performance as a novel Web-search feature. We demonstrate that the results produced by ClickRank for Web-search ranking are highly competitive with those produced by other approaches, yet achieved at better scalability and substantially lower computational costs. Finally, we discuss novel applications of ClickRank in providing enriched user Web-search experience, highlighting the usefulness of our approach for nonranking tasks.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning-Based Classification of Academic Performance via Imaging Sensors;IEEE Sensors Journal;2021-11-15

2. A systematic review on page ranking algorithms;International Journal of Information Technology;2020-02-22

3. Automatic Query Refining Based on Eye-Tracking Feedback;Computing and Informatics;2019

4. Social Search;Social Information Access;2018

5. Ranking Documents Based on the Semantic Relations Using Analytical Hierarchy Process;Information Retrieval and Management;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3