An Autotuning Framework for Scalable Execution of Tiled Code via Iterative Polyhedral Compilation

Author:

Sato Yukinori1ORCID,Yuki Tomoya2,Endo Toshio2

Affiliation:

1. Toyohashi University of Technology, Tempaku-cho, Toyohashi, Japan

2. Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan

Abstract

On modern many-core CPUs, performance tuning against complex memory subsystems and scalability for parallelism is mandatory to achieve their potential. In this article, we focus on loop tiling, which plays an important role in performance tuning, and develop a novel framework that analytically models the load balance and empirically autotunes unpredictable cache behaviors through iterative polyhedral compilation using LLVM/Polly. From an evaluation on many-core CPUs, we demonstrate that our autotuner achieves a performance superior to those that use conventional static approaches and well-known autotuning heuristics. Moreover, our autotuner achieves almost the same performance as a brute-force search-based approach.

Funder

CREST, Japan Science and Technology Agency, JSPS KAKENHI

JST PRESTO

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Programs Efficiency through a Machine Learning-Based Model for Tile Size Selection;BIO Web of Conferences;2024

2. Influence of loop transformations on performance and energy consumption of the multithreded WZ factorization;Annals of Computer Science and Information Systems;2022-09-26

3. A Methodology for Efficient Tile Size Selection for Affine Loop Kernels;International Journal of Parallel Programming;2022-05-23

4. An Analytical Model for Loop Tiling Transformation;Lecture Notes in Computer Science;2022

5. Bandwidth-Aware Loop Tiling for DMA-Supported Scratchpad Memory;Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques;2020-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3