Algebraic software architecture reconfiguration

Author:

Wermelinger Michel1,Fiadeiro José Luiz2

Affiliation:

1. Univ. Nova de Lisbon, Caparica, Portugal

2. Univ. de Lisboa, Lisbon, Portugal

Abstract

The ability of reconfiguring software architectures in order to adapt them to new requirements or a changing environment has been of growing interest, but there is still not much formal work in the area. Most existing approaches deal with run-time changes in a deficient way. The language to express computations is often at a very low level of specification, and the integration of two different formalisms for the computations and reconfigurations require sometimes substantial changes. To address these problems, we propose a uniform algebraic approach with the following characteristics. Components are written in a high-level program design language with the usual notion of state. The approach combines two existing frameworks—one to specify architectures, the other to rewrite labelled graphs—just through small additions to either of them. It deals with certain typical problems such as guaranteeing that new components are introduced in the correct state (possibly transferred from the old components they replace). It shows the relationships between reconfigurations and computations while keeping them separate, because the approach provides a semantics to a given architecture through the algebraic construction of an equivalent program, whose computations can be mirrored at the architectural level.

Publisher

Association for Computing Machinery (ACM)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3