A comparative study of three deep learning models for PM2.5 interpolation

Author:

Li Lixin1

Affiliation:

1. Department of Computer Science, Georgia Southern University, USA

Publisher

ACM

Reference27 articles.

1. US Environmental Protection Agency and William K. Reilly. 1990. State Implementation Plans ; General Preamble for the Implementation of Title I of the Clean Air Act Amendments of 1990 . (Nov. 1990), 74 pages. https://www.epa.gov/criteria-air-pollutants/naaqs-table US Environmental Protection Agency and William K. Reilly. 1990. State Implementation Plans; General Preamble for the Implementation of Title I of the Clean Air Act Amendments of 1990. (Nov. 1990), 74 pages. https://www.epa.gov/criteria-air-pollutants/naaqs-table

2. Saad Albawi Tareq Abed Mohammed and Saad ALZAWI. 2017. Understanding of a Convolutional Neural Network. https://doi.org/10.1109/ICEngTechnol.2017.8308186 Saad Albawi Tareq Abed Mohammed and Saad ALZAWI. 2017. Understanding of a Convolutional Neural Network. https://doi.org/10.1109/ICEngTechnol.2017.8308186

3. Preeti Bamane and Mangal Patil . 2020. INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY A comparative study of different LSTM neural networks in predicting air pollutant concentrations. Indian Journal of Science and Technology 13 (11 2020 ), 3664. https://doi.org/10.17485/IJST/v13i35.1276 Preeti Bamane and Mangal Patil. 2020. INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY A comparative study of different LSTM neural networks in predicting air pollutant concentrations. Indian Journal of Science and Technology 13 (11 2020), 3664. https://doi.org/10.17485/IJST/v13i35.1276

4. Yitian Chen , K Yanfei , C Yixiong , and W Zizhuo . 2020. Probabilistic Forecasting with Temporal Convolutional Neural Network. Neurocomputing 399 (03 2020 ). https://doi.org/10.1016/j.neucom.2020.03.011 Yitian Chen, K Yanfei, C Yixiong, and W Zizhuo. 2020. Probabilistic Forecasting with Temporal Convolutional Neural Network. Neurocomputing 399 (03 2020). https://doi.org/10.1016/j.neucom.2020.03.011

5. Aditya Devarakonda Maxim Naumov and Michael Garland. 2018. AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks. arxiv:1712.02029 [cs.LG] Aditya Devarakonda Maxim Naumov and Michael Garland. 2018. AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks. arxiv:1712.02029 [cs.LG]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3