1. US Environmental Protection Agency and William K. Reilly. 1990. State Implementation Plans ; General Preamble for the Implementation of Title I of the Clean Air Act Amendments of 1990 . (Nov. 1990), 74 pages. https://www.epa.gov/criteria-air-pollutants/naaqs-table US Environmental Protection Agency and William K. Reilly. 1990. State Implementation Plans; General Preamble for the Implementation of Title I of the Clean Air Act Amendments of 1990. (Nov. 1990), 74 pages. https://www.epa.gov/criteria-air-pollutants/naaqs-table
2. Saad Albawi Tareq Abed Mohammed and Saad ALZAWI. 2017. Understanding of a Convolutional Neural Network. https://doi.org/10.1109/ICEngTechnol.2017.8308186 Saad Albawi Tareq Abed Mohammed and Saad ALZAWI. 2017. Understanding of a Convolutional Neural Network. https://doi.org/10.1109/ICEngTechnol.2017.8308186
3. Preeti Bamane and Mangal Patil . 2020. INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY A comparative study of different LSTM neural networks in predicting air pollutant concentrations. Indian Journal of Science and Technology 13 (11 2020 ), 3664. https://doi.org/10.17485/IJST/v13i35.1276 Preeti Bamane and Mangal Patil. 2020. INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY A comparative study of different LSTM neural networks in predicting air pollutant concentrations. Indian Journal of Science and Technology 13 (11 2020), 3664. https://doi.org/10.17485/IJST/v13i35.1276
4. Yitian Chen , K Yanfei , C Yixiong , and W Zizhuo . 2020. Probabilistic Forecasting with Temporal Convolutional Neural Network. Neurocomputing 399 (03 2020 ). https://doi.org/10.1016/j.neucom.2020.03.011 Yitian Chen, K Yanfei, C Yixiong, and W Zizhuo. 2020. Probabilistic Forecasting with Temporal Convolutional Neural Network. Neurocomputing 399 (03 2020). https://doi.org/10.1016/j.neucom.2020.03.011
5. Aditya Devarakonda Maxim Naumov and Michael Garland. 2018. AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks. arxiv:1712.02029 [cs.LG] Aditya Devarakonda Maxim Naumov and Michael Garland. 2018. AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks. arxiv:1712.02029 [cs.LG]