Driver Maneuver Interaction Identification with Anomaly-Aware Federated Learning on Heterogeneous Feature Representations

Author:

Tabatabaie Mahan1ORCID,He Suining1ORCID

Affiliation:

1. School of Computing, College of Engineering, University of Connecticut, Storrs, CT, USA

Abstract

Driver maneuver interaction learning (DMIL) refers to the classification task with the goal of identifying different driver-vehicle maneuver interactions (e.g., left/right turns). Existing conventional studies largely focused on the centralized collection of sensor data from the drivers' smartphones (say, inertial measurement units or IMUs, like accelerometer and gyroscope). Such a centralized mechanism might be precluded by data regulatory constraints. Furthermore, how to enable an adaptive and accurate DMIL framework remains challenging due to (i) complexity in heterogeneous driver maneuver patterns, and (ii) impacts of anomalous driver maneuvers due to, for instance, aggressive driving styles and behaviors. To overcome the above challenges, we propose AF-DMIL, an Anomaly-aware Federated Driver Maneuver Interaction Learning system. We focus on the real-world IMU sensor datasets (e.g., collected by smartphones) for our pilot case study. In particular, we have designed three heterogeneous representations for AF-DMIL regarding spectral, time series, and statistical features that are derived from the IMU sensor readings. We have designed a novel heterogeneous representation attention network (HetRANet) based on spectral channel attention, temporal sequence attention, and statistical feature learning mechanisms, jointly capturing and identifying the complex patterns within driver maneuver behaviors. Furthermore, we have designed a densely-connected convolutional neural network in HetRANet to enable the complex feature extraction and enhance the computational efficiency of HetRANet. In addition, we have designed within AF-DMIL a novel anomaly-aware federated learning approach for decentralized DMIL in response to anomalous maneuver data. To ease extraction of the maneuver patterns and evaluation of their mutual differences, we have designed an embedding projection network that projects the high-dimensional driver maneuver features into low-dimensional space, and further derives the exemplars that represent the driver maneuver patterns for mutual comparison. Then, AF-DMIL further leverages the mutual differences of the exemplars to identify those that exhibit anomalous patterns and deviate from others, and mitigates their impacts upon the federated DMIL. We have conducted extensive driver data analytics and experimental studies on three real-world datasets (one is harvested on our own) to evaluate the prototype of AF-DMIL, demonstrating AF-DMIL's accuracy and effectiveness compared to the state-of-the-art DMIL baselines (on average by more than 13% improvement in terms of DMIL accuracy), as well as fewer communication rounds (on average 29.20% fewer than existing distributed learning mechanisms).

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference81 articles.

1. ST-DeepHAR: Deep learning model for human activity recognition in IoHT applications;Abdel-Basset Mohamed;IEEE IoT-J,2020

2. Driver Maneuver Detection and Analysis Using Time Series Segmentation and Classification

3. Apple. 2021. Apple Developer Documents - Rotation Matrix. Retrieved October 4, 2021 from https://developer.apple.com/documentation/coremotion/cmattitude/1616139-rotationmatrix

4. Calm commute: Guided slow breathing for daily stress management in drivers;Balters Stephanie;Proc. ACM IMWUT,2020

5. Convolutional neural network with adaptive regularization to classify driving styles on smartphones;Bejani Mohammad Mahdi;IEEE T-ITS,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3