Compressed-Domain ECG-based Biometric User Identification Using Task-Driven Dictionary Learning

Author:

Sun Ting-Wei1,Ali Danish1,Wu Ayeu (Andy)1

Affiliation:

1. Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Abstract

In recent years, user identification has become crucial for authorized machine access. Electrocardiography (ECG) is a new and rising biometrics signature. Rather than traditional biological traits, ECG cannot be easily imitated. In the long-term monitoring system, the wireless wearable ECG biomedical sensor nodes are resource-limited. Recently, compressive sensing (CS) technology is extensively applied to reduce the power of data transmission and acquisition. The prior CS-based reconstruction process aims at improving energy efficiency with different schemes, and they focus on the performance of reconstruction only. Therefore, we present a sparse coding-based classifier, trained by task-driven dictionary learning (TDDL), to realize low-complexity user identification in compressed-domain directly. TDDL is one of the dictionary learning and designed for classification tasks. It co-optimizes the dictionary and classifier weighting simultaneously, which gives better accuracy. In this article, we are proposing a TDDL-based compression learning algorithm for ECG biometric user identification as this directly identifies user identity (ID) without undergoing reconstruction process and conventional classifier. It can extract necessary information from the compressed-ECG signal directly to save the system power and computational complexity. The algorithm has 2%–10% accuracy improvements compared with state-of-the-art algorithms and maintains low complexity at the same time. Our proposed TDDL-CL will be the better choice in the long-term wearable ECG biometric devices.

Funder

Ministry of Science and Technology of Taiwan

Publisher

Association for Computing Machinery (ACM)

Subject

Health Information Management,Health Informatics,Computer Science Applications,Biomedical Engineering,Information Systems,Medicine (miscellaneous),Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3