DeepMeshCity: A Deep Learning Model for Urban Grid Prediction

Author:

Zhang Chi1ORCID,Cai Linhao2ORCID,Chen Meng1ORCID,Li Xiucheng3ORCID,Cong Gao4ORCID

Affiliation:

1. Peking University, Beijing, China

2. Beijing Juefei Technology Co. Ltd, Beijing, China

3. Harbin Institute of Technology, Shenzhen, China

4. Nanyang Technological University, Singapore, Singapore

Abstract

Urban grid prediction can be applied to many classic spatial-temporal prediction tasks such as air quality prediction, crowd density prediction, and traffic flow prediction, which is of great importance to smart city building. In light of its practical values, many methods have been developed for it and have achieved promising results. Despite their successes, two main challenges remain open: (a) how to well capture the global dependencies and (b) how to effectively model the multi-scale spatial-temporal correlations? To address these two challenges, we propose a novel method— DeepMeshCity , with a carefully-designed Self-Attention Citywide Grid Learner ( SA-CGL ) block comprising of a self-attention unit and a Citywide Grid Learner ( CGL ) unit. The self-attention block aims to capture the global spatial dependencies, and the CGL unit is responsible for learning the spatial-temporal correlations. In particular, a multi-scale memory unit is proposed to traverse all stacked SA-CGL blocks along a zigzag path to capture the multi-scale spatial-temporal correlations. In addition, we propose to initialize the single-scale memory units and the multi-scale memory units by using the corresponding ones in the previous fragment stack, so as to speed up the model training. We evaluate the performance of our proposed model by comparing with several state-of-the-art methods on four real-world datasets for two urban grid prediction applications. The experimental results verify the superiority of DeepMeshCity over the existing ones. The code is available at https://github.com/ILoveStudying/DeepMeshCity.

Funder

National Natural Science Foundation of China

Shenzhen College Stability Support Plan

China Scholarship Council

National Research Foundation, Singapore under its AI Singapore Programme

Publisher

Association for Computing Machinery (ACM)

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3