The Crowd Wisdom for Location Privacy of Crowdsensing Photos

Author:

Zhou Tongqing1,Cai Zhiping1,Liu Fang2

Affiliation:

1. College of Computer, National University of Defense Technology, Changsha, Hunan, China

2. School of Design, Hunan University, Changsha, Hunan, China

Abstract

The incorporation of the mobile crowd in visual sensing provides a significant opportunity to explore and understand uncharted physical places. We investigate the gains and losses of the involvement of the crowd wisdom on users' location privacy in photo crowdsensing. For the negative effects, we design a novel crowdsensing photo location inference model, regardless of the robust location protection techniques, by jointly exploiting the visual representation, correlation, and geo-annotation capabilities extracted from the crowd. Compared with existing retrieval-based and model-based location inference techniques, our proposal poses more pernicious threats to location privacy by considering the no-reference-photos situations of crowdsensing. We conduct extensive analyses on the model with four photo datasets and crowdsourcing surveys for geo-annotation. The results indicate that being in a crowd of photos will, unfortunately, increase one's risk to be geo-identified, and highlights that the model can yield a considerable high inference accuracy (48%~70%) and serious privacy exposure (over 80% of users get privacy disclosed) with a small portion of geo-annotated samples. In view of the threats, we further propose an adaptive grouping-based signing model that hides a user's track with the camouflage of a crowd of users. Wherein, ring signature is tailored for crowdsensing to provide indistinguishable while valid identities for every user's submission. We theoretically analyze its adjustable privacy protection capability and develop a prototype to evaluate the effectiveness and performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Pursuit of Beauty: Aesthetic-Aware and Context-Adaptive Photo Selection in Crowdsensing;IEEE Transactions on Knowledge and Data Engineering;2023-09-01

2. From Eye to Brain: A Proactive and Distributed Crowdsensing Framework for Federated Learning;IEEE Internet of Things Journal;2023-05-01

3. VILL: Toward Efficient and Automatic Visual Landmark Labeling;ACM Transactions on Sensor Networks;2023-04-21

4. A Study on Mobile Crowd Sensing Systems for Healthcare Scenarios;IEEE Access;2023

5. Never Too Late: Tracing and Mitigating Backdoor Attacks in Federated Learning;2022 41st International Symposium on Reliable Distributed Systems (SRDS);2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3