What Did My AI Learn? How Data Scientists Make Sense of Model Behavior

Author:

Cabrera Ángel Alexander1ORCID,Tulio Ribeiro Marco2ORCID,Lee Bongshin2ORCID,Deline Robert2ORCID,Perer Adam1ORCID,Drucker Steven M.2ORCID

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA

2. Microsoft Research, Redmond, Washington

Abstract

Data scientists require rich mental models of how AI systems behave to effectively train, debug, and work with them. Despite the prevalence of AI analysis tools, there is no general theory describing how people make sense of what their models have learned. We frame this process as a form of sensemaking and derive a framework describing how data scientists develop mental models of AI behavior. To evaluate the framework, we show how existing AI analysis tools fit into this sensemaking process and use it to design AIFinnity , a system for analyzing image-and-text models. Lastly, we explored how data scientists use a tool developed with the framework through a think-aloud study with 10 data scientists tasked with using AIFinnity to pick an image captioning model. We found that AIFinnity ’s sensemaking workflow reflected participants’ mental processes and enabled them to discover and validate diverse AI behaviors.

Funder

National Science Foundation Graduate Research Fellowship Program

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Extraction, Visualization, and Prediction Through Natural Language Processing;2024 IEEE International Conference on Omni-layer Intelligent Systems (COINS);2024-07-29

2. Deconstructing Human‐AI Collaboration: Agency, Interaction, and Adaptation;Computer Graphics Forum;2024-06

3. The Cadaver in the Machine: The Social Practices of Measurement and Validation in Motion Capture Technology;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. Game changers: A generative AI prompt protocol to enhance human-AI knowledge co-construction;Business Horizons;2024-04

5. Making Sense of AI Systems Development;IEEE Transactions on Software Engineering;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3