MC-DeF

Author:

Charitopoulos George1,Pnevmatikatos Dionisios N.2,Gaydadjiev Georgi3

Affiliation:

1. School of Electrical and Computer Engineering, Technical University of Crete, Akrotiri Chania, Greece

2. School of Electric and Computer Engineering, National Technical University of Athens

3. Bernoulli Institute, University of Groningen and Department of Computing, Imperial College London

Abstract

Executing complex scientific applications on Coarse-Grain Reconfigurable Arrays ( CGRAs ) promises improvements in execution time and/or energy consumption compared to optimized software implementations or even fully customized hardware solutions. Typical CGRA architectures contain of multiple instances of the same compute module that consist of simple and general hardware units such as ALUs, simple processors. However, generality in the cell contents, while convenient for serving a wide variety of applications, penalizes performance and energy efficiency. To that end, a few proposed CGRAs use custom logic tailored to a particular application’s specific characteristics in the compute module. This approach, while much more efficient, restricts the versatility of the array. To date, versatility at hardware speeds is only supported with Field programmable gate arrays (FPGAs), that are reconfigurable at a very fine grain. This work proposes MC-DeF, a novel Mixed-CGRA Definition Framework targeting a Mixed-CGRA architecture that leverages the advantages of CGRAs by utilizing a customized cell array, and those of FPGAs by incorporating a separate LUT array used for adaptability. The framework presented aims to develop a complete CGRA architecture. First, a cell structure and functionality definition phase creates highly customized application/domain specific CGRA cells. Then, mapping and routing phases define the CGRA connectivity and cell-LUT array transactions. Finally, an energy and area estimation phase presents the user with area occupancy and energy consumption estimations of the final design. MC-DeF uses novel algorithms and cost functions driven by user defined metrics, threshold values, and area/energy restrictions. The benefits of our framework, besides creating fast and efficient CGRA designs, include design space exploration capabilities offered to the user. The validity of the presented framework is demonstrated by evaluating and creating CGRA designs of nine applications. Additionally, we provide comparisons of MC-DeF with state-of-the-art related works, and show that MC-DeF offers competitive performance (in terms of internal bandwidth and processing throughput) even compared against much larger designs, and requires fewer physical resources to achieve this level of performance. Finally, MC-DeF is able to better utilize the underlying FPGA fabric and achieves the best efficiency (measured in LUT/GOPs).

Funder

Hellenic Foundation for Research and Innovation

General Secretariat forResearch and Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Loop Subgraph-Level Greedy Mapping Algorithm for Grid Coarse-Grained Reconfigurable Array;Tsinghua Science and Technology;2023-04

2. Energy Efficient Design of Coarse-Grained Reconfigurable Architectures: Insights, Trends and Challenges;2022 International Conference on Field-Programmable Technology (ICFPT);2022-12-05

3. Architectural Implications for Inference of Graph Neural Networks on CGRA-based Accelerators;2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME);2022-06-12

4. FastCGRA: A Modeling, Evaluation, and Exploration Platform for Large-Scale Coarse-Grained Reconfigurable Arrays;2021 International Conference on Field-Programmable Technology (ICFPT);2021-12-06

5. CGRA-ME: An Open-Source Framework for CGRA Architecture and CAD Research : (Invited Paper);2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP);2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3