Pair-based Uncertainty and Diversity Promoting Early Active Learning for Person Re-identification

Author:

Liu Wenhe1ORCID,Chang Xiaojun2ORCID,Chen Ling3,Phung Dinh2,Zhang Xiaoqin4,Yang Yi3,Hauptmann Alexander G.1

Affiliation:

1. Language Technologies Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania,

2. Faculty of Information Technology, Monash University, Melbourne, VIC, Australia

3. Centre for Artificial Intelligence, University of Technology Sydney, Sydney, NSW, Australia

4. College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, China

Abstract

The effective training of supervised Person Re-identification (Re-ID) models requires sufficient pairwise labeled data. However, when there is limited annotation resource, it is difficult to collect pairwise labeled data. We consider a challenging and practical problem called Early Active Learning, which is applied to the early stage of experiments when there is no pre-labeled sample available as references for human annotating. Previous early active learning methods suffer from two limitations for Re-ID. First, these instance-based algorithms select instances rather than pairs, which can result in missing optimal pairs for Re-ID. Second, most of these methods only consider the representativeness of instances, which can result in selecting less diverse and less informative pairs. To overcome these limitations, we propose a novel pair-based active learning for Re-ID. Our algorithm selects pairs instead of instances from the entire dataset for annotation. Besides representativeness, we further take into account the uncertainty and the diversity in terms of pairwise relations. Therefore, our algorithm can produce the most representative, informative, and diverse pairs for Re-ID data annotation. Extensive experimental results on five benchmark Re-ID datasets have demonstrated the superiority of the proposed pair-based early active learning algorithm.

Funder

Australian Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3