Physecology: A Conceptual Framework to Describe Data Physicalizations in their Real-World Context

Author:

Sauvé Kim1ORCID,Sturdee Miriam1,Houben Steven2

Affiliation:

1. Lancaster University, United Kingdom

2. Eindhoven University of Technology, The Netherlands

Abstract

The standard definition for “physicalizations” is “a physical artifact whose geometry or material properties encode data”  [ 47 ]. While this working definition provides the fundamental groundwork for conceptualizing physicalization, in practice many physicalization systems go beyond the scope of this definition as they consist of distributed physical and digital elements that involve complex interaction mechanisms. In this article, we examine how “physicalization” is part of a broader ecology—the “physecology”—with properties that go beyond the scope of the working definition. Through analyzing 60 representative physicalization papers, we derived six design dimensions of a physecology: (i) represented data type, (ii) way of information communication, (iii) interaction mechanisms, (iv) spatial input–output coupling, (v) physical setup, and (vi) audiences involved. Our contribution is the extension of the definition of physicalization to the broader concept of “physecology,” to provide conceptual clarity on the design of physicalizations for future work.

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards an analytical framework for AI-powered creative support systems in interactive digital narratives;Journal of Entrepreneurial Researchers;2024-07-09

2. Physicalization from Theory to Practice: Exploring Contemporary Challenges for Physicalization Design;Designing Interactive Systems Conference;2024-07

3. A Year of Interaction Around Town: Gathering Traces with an Interactive Knitting Machine and Community Stitch Markers;Designing Interactive Systems Conference;2024-07

4. Data Physicalization with Haptic Variables: Exploring Resistance and Friction;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-11

5. From Exploration to End of Life: Unpacking Sustainability in Physicalization Practices;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3