AOI-shapes: An Efficient Footprint Algorithm to Support Visualization of User-defined Urban Areas of Interest

Author:

Li Mingzhao1,Bao Zhifeng1,Choudhury Farhana2,Samet Hanan3,Duckham Matt1,Sellis Timos4

Affiliation:

1. RMIT University Australia, Melbourne, Victoria, Australia

2. University of Melbourne Australia, Parkville, Victoria, Australia, Australia

3. University of Maryland, College Park, MD

4. Swinburne University of Technology Australia, Hawthorn, Victoria, Australia

Abstract

Understanding urban areas of interest (AOIs) is essential in many real-life scenarios, and such AOIs can be computed based on the geographic points that satisfy user queries. In this article, we study the problem of efficient and effective visualization of user-defined urban AOIs in an interactive manner. In particular, we first define the problem of user-defined AOI visualization based on a real estate data visualization scenario, and we illustrate why a novel footprint method is needed to support the visualization. After extensively reviewing existing “footprint” methods, we propose a parameter-free footprint method, named AOI-shapes, to capture the boundary information of a user-defined urban AOI. Next, to allow interactive query refinements by the user, we propose two efficient and scalable algorithms to incrementally generate urban AOIs by reusing existing visualization results. Finally, we conduct extensive experiments with both synthetic and real-world datasets to demonstrate the quality and efficiency of the proposed methods.

Funder

ARC

Google Faculty Research Award

U.S. National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DDCEL: Efficient Distributed Doubly Connected Edge List for Large Spatial Networks;2023 24th IEEE International Conference on Mobile Data Management (MDM);2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3