Informed content delivery across adaptive overlay networks

Author:

Byers John1,Considine Jeffrey1,Mitzenmacher Michael2,Rost Stanislav3

Affiliation:

1. Boston University, Boston, Massachusetts

2. Harvard University, Cambridge, Massachusetts

3. MIT Laboratory for Computer Science, Cambridge, Massachusetts

Abstract

Overlay networks have emerged as a powerful and highly flexible method for delivering content. We study how to optimize throughput of large transfers across richly connected, adaptive overlay networks, focusing on the potential of collaborative transfers between peers to supplement ongoing downloads. First, we make the case for an erasure-resilient encoding of the content. Using the digital fountain encoding approach, end-hosts can efficiently reconstruct the original content of size $n$ from a subset of any $n$ symbols drawn from a large universe of encoded symbols. Such an approach affords reliability and a substantial degree of application-level flexibility, as it seamlessly accommodates connection migration and parallel transfers while providing resilience to packet loss. However, since the sets of encoded symbols acquired by peers during downloads may overlap substantially, care must be taken to enable them to collaborate effectively. Our main contribution is a collection of useful algorithmic tools for efficient estimation, summarization, and approximate reconciliation of sets of symbols between pairs of collaborating peers, all of which keep message complexity and computation to a minimum. Through simulations and experiments on a prototype implementation, we demonstrate the performance benefits of our informed content delivery mechanisms and how they complement existing overlay network architectures.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference29 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Set Reconciliation Using Ternary and Invertible Bloom Filters;IEEE Transactions on Knowledge and Data Engineering;2023-11-01

2. FIFO queues are all you need for cache eviction;Proceedings of the 29th Symposium on Operating Systems Principles;2023-10-23

3. A Review of Cuckoo Filters for Privacy Protection and Their Applications;Electronics;2023-06-25

4. Partial Network Partitioning;ACM Transactions on Computer Systems;2022-12-19

5. BloomTime: space-efficient stateful tracking of time-dependent network performance metrics;Telecommunication Systems;2020-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3