Congestion control for high bandwidth-delay product networks

Author:

Katabi Dina1,Handley Mark2,Rohrs Charlie3

Affiliation:

1. MIT-LCS

2. ICSI

3. Tellabs

Abstract

Theory and experiments show that as the per-flow product of bandwidth and latency increases, TCP becomes inefficient and prone to instability, regardless of the queuing scheme. This failing becomes increasingly important as the Internet evolves to incorporate very high-bandwidth optical links and more large-delay satellite links.To address this problem, we develop a novel approach to Internet congestion control that outperforms TCP in conventional environments, and remains efficient, fair, scalable, and stable as the bandwidth-delay product increases. This new eXplicit Control Protocol, XCP, generalizes the Explicit Congestion Notification proposal (ECN). In addition, XCP introduces the new concept of decoupling utilization control from fairness control. This allows a more flexible and analytically tractable protocol design and opens new avenues for service differentiation.Using a control theory framework, we model XCP and demonstrate it is stable and efficient regardless of the link capacity, the round trip delay, and the number of sources. Extensive packet-level simulations show that XCP outperforms TCP in both conventional and high bandwidth-delay environments. Further, XCP achieves fair bandwidth allocation, high utilization, small standing queue size, and near-zero packet drops, with both steady and highly varying traffic. Additionally, the new protocol does not maintain any per-flow state in routers and requires few CPU cycles per packet, which makes it implementable in high-speed routers.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Software

Reference27 articles.

1. The network simulator ns-2. http://www.isi.edu/nsnam/ns. The network simulator ns-2. http://www.isi.edu/nsnam/ns.

2. Red parameters. http://www.icir.org/floyd/red.html#parameters. Red parameters. http://www.icir.org/floyd/red.html#parameters.

3. Phantom

4. REM: active queue management

Cited by 214 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3